The Ever Changing World of Feed Additives in The Poultry Industry

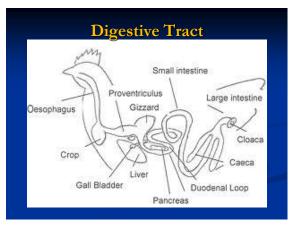
B. S. Lumpkins and G.F. Mathis Southern Poultry Research Inc. Athens, GA, USA

Outline

- Southern Poultry Research
- Impact of ethanol production of diet compositions
- Enzymes what are they and how they help nutritionist
- Products to aid in broiler health for a "natural" chicken

Southern Poultry Research

Feed Mixing



Pelleting

The Problem at Hand

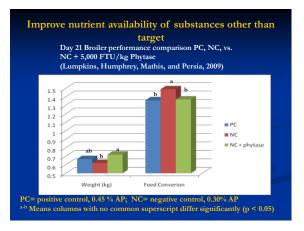
- Nutritionists are constantly facing challenges when formulating diets
- Recent production of ethanol has created some of the biggest challenges
- In attempts to formulate least cost diets
 Faced with lower quality ingredients due to rising prices of better quality ingredients such as com and soybean meal
 - Fat sources also increasing in price due to biodiesel
- Do enzymes hold the answer in alleviating this stress?

A Common Enzyme in Poultry Diets

- Phytase is an enzyme that has been known to improve phosphorus utilization from grain and oilseeds (T.S. Nelson et al., 1969; M.I. Davies et al. 1970)
- Technical merits of phytase demonstrated, but commercialization was delayed until efficient fermentation technology was developed
- The current commercial phytase concentrations are effective at liberating phosphorus from the diet

Benefits of Phytase

- Phytase has also been recently credited with liberation of other nutrients including Ca, energy and amino acids
- 500 to 1000 FTU/kg of phytase in current formulations is based on costs associated with the current production technology



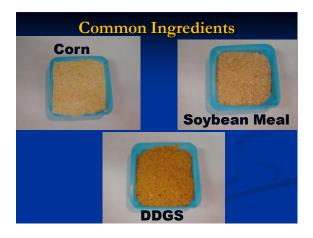
Added Benefits of Phytase

 Feeding of phytase at higher concentrations may result in increased performance (Putress et al., 2007; Persia et al., 2006; Shirley et al., 2002)

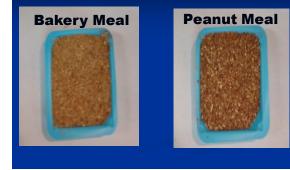
Day 21 metabolizable energy, % protein digestibility, % phosphorus digestibility, and % calcium digestibility, PC, NC, vs. NC + 5,000 FTU/kg Phytase

Treatment	ME	Protein,	Phosphorus,	Calcium,		
	(kcal/Kg)	%	%	%		
1. PC, 0.45% AP	3263 b	85.5 b	70.1 b	67.0 b		
2. NC, 0.30% AP	3272 b	84.6 b	66.6 c	68.9 b		
3. NC +5,000 FTU/kg phytase	3459 a	90.2 a	81.5 a	74.5 a		
ab Means columns with no common superscript differ significantly (p < 0.05)						

Day 21 metabolizable energy, % protein digestibility, % phosphorus digestibility, and % calcium digestibility, PC, NC, vs. NC + 5,000 FTU/kg Phytase


Treatment	ME	Protein,	Phosphorus,	Calcium,	
	(kcal/Kg)	%	%	%	
1. PC, 0.45% AP	3263 b	85.5 b	70.1 b	67.0 b	
2. NC, 0.30% AP	3272 b	84.6 b	66.6 c	68.9 b	
3. NC +5,000	3459 a	90.2 a	81.5 a	74.5 a	
FTU/kg phytase	196	1 4.7	11.4	17.5	

^{1-b} Means columns with no common superscript differ significantly ($p \le 0.05$

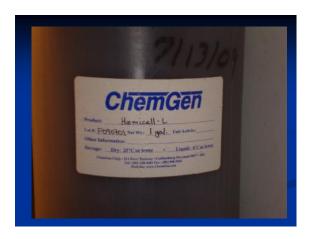


Where can enzymes take us

- Today phytase has become a common additive in commercial poultry diets and has opened the door for other enzymes (i.e. non-starch polysaccharide enzymes)
- Distiller's dried grains with solubles (DDGS) has a higher level of NSP's than its parent product corn (Wang et al. 2007)
- Many common feed ingredients contain anti-nutritional factors
 - The trick is knowing how to deal with them

Alternative Feed Ingredients

Anti-nutritive effects of NSP


All cereals used in poultry feed contain various levels of NSP

- Increase digesta viscosity
- Effect physiology and morphology of the intestinal tract
- Decease digesta passage rate and increase digesta retention time (increase bacterial colonization)
- Alter intestinal microbiota profile
- Depress feed conversion efficiency and growth

NSP's in Feed ingredients (Bach 1997)						
	Corn	Wheat	Rye	Barley ²	Oats ²	Soybean meal
Starch	690	651	613	645	557	
Beta-glucan			16	42		
Arabinose			12			
Xylose			20			
Raffinose						10
Stachyose						
Cellulose	22	20	16		14	62
Total NSP ³		119	152	124	116	217
SNCP ⁴		25	42	50	54	
INCP ⁵	66		94	64	49	

Benefits of NSP Enzymes

 Supplementing with exogenous enzymes degrade fiber and improve the availability from various grains i.e.
 DDGS (Min et al., 2009)

Enzymes decrease the anti-nutritive components of NSP

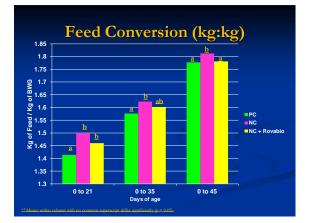
Guar meal: high levels of β-mannan

Corn/ soy meal + 10% Guar meal Day 42: FC 2.131 Wt. Gain 1.656 (kg)

Corn/ soy meal + 10% Guar meal + Hemicell (β- mannanase) Day 42: FC 1.924 Wt. Gain 1.958 (kg)

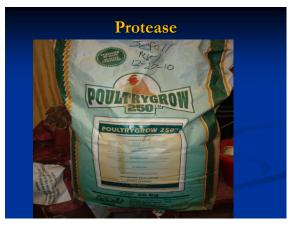


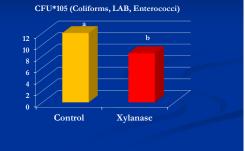
Rovabio The versatile enzyme


The synergistic match of Row and DDGS consistently delive increased energy value in po

Significant levels of xylanase and cellulase make Rovabio[®] the perfe enzyme for DDGS.

Get our fact sheet on how Rovabio is effective in degrading the high NS content of DDGS : www.adisseo.biz







NSP enzymes going beyond nutrient utilization

Enzymes influence bacterial populations and reduce microbial use of nutrients (Bedford and Apajalahti, 2001)

Alternatives for a "Natural" broiler

Other Factors at Hand

- Feed cost may be the main concern, but there are other issues currently arising
- The EU ban of antibiotics
- Push from consumers to produce "natural" chicken (antibiotic and drug free)
- Recently, the removal of 3-nitro
 What's next to go?
- The need to search for alternatives

Growth Promoting Antibiotics

Antibiotics for many years have been an effective way of enhancing animal health, uniformity, and production efficacy (Bedford, 2000)

<u>Probiotics:</u> stabilize and balance host intestinal microbiota

Most important role of beneficial bacteria is inhibit colonization of pathogenic bacteria

- Compete for adhesion receptors and nutrients
- Produce antibacterial substances
- Modulate immune response
- Lower pH by production of lactic acid and short chain fatty-acids

Influencing Bacterial Populations

- Beneficial compete with Detrimental bacteria for nutrients
- Competitive Exclusion: Beneficial bacteria block adhesion sites (Hofacre, et. al. 2002)

Can a Probiotic replace Antibiotic Growth Promoters and Improve Performance of Broiler Chickens

Thoughts to Consider

- Enzymes have the potential to help liberate the availability of nutrients in plant origin feedstuffs
- Feeding NSP enzymes from hatch to harvest provide maximal benefit.
- May provide other benefits in addition to improved performance

Thoughts to Consider

- Probiotics may provide a natural alternative to aid in the birds wellbeing
- Both probiotics and enzymes alter to community of the intestinal bacterial population to improve performance
- The combination of probiotics and exogenous enzymes in poultry diets can provide the answers to the main issues facing nutritionist today

