Antibiotic Resistance Genes and their Association in Dairy Cattle

Brittany Willing Virginia Tech February 23, 2013

Overview

- Antibiotic resistance genes (ARGs)
 - What are they?
 - Linked?
 - Multiple resistance?
- Reservoirs in the dairy industry
 - Ionophores?
 - Calves?
 - Cows?
- Reducing fecal ARGs

Why Are ARGs Important?

 World Health Organization (WHO), called antibiotic resistance a critical human health challenge and expressed the need for "a global strategy to contain resistance"

(WHO Annual Report on Infectious Disease: Overcoming Antimicrobial Resistance)

- 2 million Americans infected, 14,000 die
- 75-95% of antibiotics can be excreted in an unaltered state

(Chee-Sanford et al, 2009, Elmund et al. 1971, Feinman et al. 1978)

Why Are ARGs Important?

- Environmental Contaminant
- Animal Treatment Failure
- Human Treatment Failure
- Public Perception of the Dairy Industry

What are ARGs? Transference?

- Segments of DNA
 - mobile genetic elements
 - Plasmids
 - Transposons
 - Integrons
- Transformation
 - Extra-cellular DNA
- Conjugation
 - Horizontal gene transfer
- Transduction
 - Bacteriophage

How are they transferred? • Transformation • Extra-cellular DNA

How do ARGs spread so readily?

- Can ARGs be linked?
- Can bacteria carry multiple resistance?

Linked genes? Multiple resistance?

- Medicated milk replacer selected for resistance genes not used on-site (Berge *et al.* 2006)
 - Tetracycline hydrochloride, Neomycin sulfate
- Selected for:
 - Aminoglycosides (Neomycin)
 - Chloramphenicols (Chlor 500)
 - Sulfonomides (Albon)

- 39% susceptible
- 6% resistant to one antimicrobial
- 55% multiply resistant

Berge et al. 2006

Summary

- ARGs can be linked together
- High prevalence of multiple drug resistance
- Cattle are a reservoir for ARGs

Overview

- Antibiotic resistance genes (ARGs)
 - What are they?
 - Linked?
 - Multiple resistance?
- Reservoirs in the dairy industry
 - Ionophores?
 - Calves?
 - Cows?
- Reducing fecal ARGs

Brittany Wil

Where are the are the reservoirs?

Ionophores

- Evidence of ionophore resistance in ruminants
 - 60% monensin (Dawson et al. 1983)
- Ionophore resistance is not readily spread between bacteria (Aarestrup et al. 1998, Aarestrup et al. 2000, Butaye et al. 2001)
- To date no ARG associated with ionophores have been elucidated nor do they have any effect on resistance in pathogens or their relative abundance

Where are the are the reservoirs?

Calves: An Important Reservoir • 1d

- Control (No antibiotics)
- Treatment 1 (Subtherapeutic, 10mg/calf/day)
 - Neomycin sulfate + oxytetracycline hydrochloride
- Treatment 2 (Therapeutic, 1000mg/calf/day)
 - Neomycin sulfate + oxytetracycline hydrochloride

Thames et al.2012

Calves: An Important Reservoir

- Conventional farms feeding oxytetracycline
- 8 farms
- 126 calves

Summary

- Calves fed medicated milk replacer are a significant reservoir for antibiotic resistance genes
- Antibiotic resistance genes tend to decrease throughout life
- When treatment removed antibiotic susceptibility of bacteria decrease

Where are the are the reservoirs?

Lactating Dairy Cows

- 213 lactating cows
- 23 farms
- ~10% sampled from each herd
- Multiple resistance • 40.48%

Overview

- Antibiotic resistance genes (ARGs)
 - What are they?
 - Linked?
 - Multiple resistance?
- Reservoirs in the dairy industry
 - Ionophores?
 - Calves?
 - Cows?
- Reducing fecal ARGs

How Can Dairy Farmers Deal With These Issues?

Reducing Fecal ARGs

- Improve management practices in calves
 - Avoid using medicated milk replacers or waste milk containing antibiotics
- Manure management (Lactating herd)
 - Lagoons are a reservoir for ARG
 - Potential for degradation?

Reducing ARGs in Lagoon

- Aerobic & Anaerobic
 - Ab Spiked
 - Killed
 - Ab Spiked and Killed
 - Background
- Antibiotics
 - Oxytetracycline
 - Sulfamethoxazole
 - Tylosin
 - Monensin

Pei et al. 2007

Reducing Lagoon ARGs

- Antibiotic degradation occurred in all 4 antibiotics tested
- Degradation occurred
 - Best at 20°C (68°F)
- Oxytetracycline degraded completely
 - Aerobic and Anaerobic
- Time is significant when degrading antibiotics and ARGs

Pei et al. 2007

Reducing ARG by Composting

- High Intensity
 - Amended with dried leaves and alfalfa
 - Watered as necessary
 - Turned weekly
- Low Intensity
 - No amendments, water, or turning

Degradation Summary

- Antibiotics can be degraded by various methods
- ARG, time is the most important factor

Take Home Message

- ARGs are an important public heath concern
- Dairy cows and calves are important reservoirs for antibiotic resistance
- Antibiotic resistance genes are organic and nature and have the potential to be degraded

