

UirginiaTech

The newborn calf

- · Calf is sterile at birth
- Early microbial colonization rather haphazard?
- Risk of colibacillosis? Early colonization by E. coli.
- Can dosing calf with "good"bacteria" colonize intestine and prevent establishment of E. coli.

UvirginiaTech

Probiotic product from Salem, VA?

- Lactobacilli grown on wheat bran
- Dose calf with priobiotic in shipped in calves housed at Vet Science
- Challenge with enteropathogenic strain of E. coli.

Problems with probiotics – according to W. E. C. Moore – VPI Anerobe Lab

- Most intestinal organisms are anaerobes not aerobes
- Microflora is a mixed culture of organisms.
- Liklihood of single species or few species to successfully populate is nill
- Intestine is rapidly populated by organisms at birth.

Source of meaningful probiotic?

- Source of organisms for probiotic?
 Older milk-fed calf?
- Duodenal cannulated
- Collect and mix with whey solution
 - Intestinal fluid is of low palatability.

UrginiaTech

Influence of "probiotic" on resistance to enteropathogenic E. coli challenge James et al, 1976

- Calves entered our facility @~ 3 hour of age
- Colostrum fed @ ~ 5 hours of age
 - No E.coli challenge
 - E. coli challenge @ 12 hours
 - E. coli challenge @ 24 hours
 - All with or without "probiotic" inoculum of 200 ml of duodenal fluid from milk-fed calf.
 Whey solution as carrier

UirginiaTech

Results

 Calves receiving probiotic inoculum had less diarrhea and higher ADG for 1st 14 days.

Serum gamma globulin – g/100 ml @ 24 h							
Inoculum	0	12 h challenge	24 h challenge	Means			
No inoculum	1.1	0.94	1.68	1.24			
Inoculum	.5	0.49	.59	.53			
Means	.80	.72	1.14	.89			
9				UrginiaTech			

Follow up study James et al., (1978) Three Treatments Colostrum @ 2.5 hours of age Colostrum and inoculum (200 ml duodenal fluid) concurrently @ 2.3 hours of age Inoculum followed three h later by colostrum @ 5.6 hours of age No E. coli challenge

Treatment	Total serum protein	Gamma globulin
No inoculum	5.97+/-0.94	1.05+/36
Colostrum and inoculum concurrent	6.07+/-0.64	1.08+/41
Delayed colostrum	5.22+/59	.76+/31

Cause of apparent depression in Ig absorption?

- Live bacteria?
- Cell walls of bacteria (endotoxins)?
- Carrier for the inoculum dried whey?

Intensive study

James et al, (1981)

- Utilized "gut loops" in newborn calves ~ 8.6 hours at beginning of treatments
- Constructed beginning 1.8 M anterior to ileocecal junction
- Each calf received all treatments
- Incubated for 4 hours
- Inject loops with ¹²⁵I gamma globulin in electrolyte solution incubated for 75 min.

UrginiaTech

Treatments

- Live bacteria .3ml duodenal fluid 9 ml anaerobic rumen fluid glucose cellobiose broth (RGC). <u>Anaerobic culture</u>
- Autoclaved culture
- Sterile RGC broth

UrginiaTech

Treatment means for uptake, bacterial no. in tissue and inoculum

Uptake of gamma globulin ^a			Bacterial growth in tissue ^b		
Live bacteria	Sterile broth	Autoclaved bacteria	Live bacteria	Sterile broth	Autoclaved bacteria
2.09 +/- 1.15	3.18 +/- 1.50	3.56 +/- 1.49	594+/- 316	86 +/- 82	220

^a milligrams gamma globulin internalized/g tissue ^b Bacteria (X10⁶)

Uptake reduced only with live bacteria culture – (P<.05) # organisms significantly related to uptake

<section-header><section-header><list-item><list-item><list-item><list-item><list-item></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row>

Cessation of Ig absorption

- Cessation termed closure
- Differs by species
- In the calf
 - Not as diet dependent
 - Very variable onset 6 24 hours
 - Precipitous decline in absorptive efficiency

Closure - One step process where uptake and transfer ceases

- Theories
 - Development of gastric and enzymatic function
 - Reduction in permeability of villus epithelial cells
 - Replacement by generation of cells incapable of pinocytocis

UirginiaTech

Replacement by generation of cells incapable of absorption.

- Micropinocytotic IgG transfer by newborn calf enterocytes
 - Existence of a receptor mediated transport system?
 - Relationship between apoptosis in cessation of Ig transfer

UvirginiaTech

Apoptosis and IgG absorption in goats Castro-Alonso et al. (2008) 10 new born kids Fed colostrum – 2,000 mg IgG/kg body weight – 2X @ 2 and 14 h Sacrificed - birth – 60 d of age. Assessed for apoptotic cells and stained for IgG.

UirginiaTech

Feeding heat-treated colostrum or unheated colostrum with two different bacterial concentrations to neonatal calves - Elizonda-Salazar and Heinrichs, 2009

- Treatments
 - · Colostrum frozen low bacteria
 - Colostrum pasteurized 60°C / 30 min. then frozen
 - Colostrum stored at 20°C for 24 h then frozen
 - First feeding 3.8 liters / 68g IgG/liter 1.5 -2 h after birth with esophageal feeder.

UvirginiaTech

IgG (g/L) and SPC of colostrum Serum protein and IgG @24 h

ltem	Low bacteria	High bacteria	Heat – treated
IgG (g/L)	69.55	69.55	66.17
SPC x103/ml	9.332	40.738	.645
Serum protein @ 24h (g/L)	57	56.2	62.5
lgG @ 24 h (g/L)	20.2	20.1	26.7
AEA of IgG @ 24 h (%)	35.4	32.4	43.9

Heat treating improved AEA and IgG at 24 h. High bacteria load was relatively low / less than 100,000 goal (McGuirk) UvirginiaTech

Role for microbial colonization and Ig absorption?

- Rate of intestinal cell production in the crypts
- Migration of cells up the villus and desquamation from the tips influenced by microbial colonization?
- Microbes may occupy binding sites on the apical plasma membrane.

	Raw vs. pasteurized colostrum Johnson et al., 2007								
		Parameter		Raw		Pasteuri			
		lgG – mg	ı/ml	72.6	67.3				
		Total plate	count	46,00	0	872			
	Co	Colostrum Seru		m protein Ig concen		lgG entration	A	EA %	
		Raw 5		.9 g/dl 18.1		1 mg/ml 3	35.6		
	Pa	steurized	6.3g/dl		22.34 mg/ml		2	26.1	
40	Correct table in proceedings						ture		

Recent UMN Field Study

M. Donahue, S. Godden

- 1,000 calves / 6 herds
- $\frac{1}{2}$ fed raw and $\frac{1}{2}$ fed heat-treated colostrum
- Colostrum total plate count and serum IgG negative
- Colostrum IgG concentration positive effect
- Heat treatment positive independent of Total plate count

UvirginiaTech

30 years later - lots of common sense

Did some "West Virginia" rub off? I hope so!!!!

UirginiaTech

Common Sense and Colostrum

- Clean cows infection and sanitation
- Don't pool colostrum
- Milk fresh cows first and process colostrum immediately.
- If refrigerating cool rapidly in ice bath
- Clean buckets, bottles and esophageal feeders
- If herd size and herd infection status warrants pasteurize or use replacer
- · Avoid use of probiotics for 24 hours

