



#### Foundational research in management and cow behavior by Dr. Carl Polan

- Social Rank, Feeding Behavior, and Free Stall
  Utilization by Dairy Cattle
- Free Stall and Feed Bunk Requirements Relative to Behavior, Production and Individual Feed Intake in Dairy Cows
- Milk Production Response to Shifting Cows Between Intra-herd Groups
- Change in Adrenal Response from Free Stall Competition













- Mixing of primi- and multiparous cows
- >1 h/d in headlocks, esp. fresh cows
- Short pen stays during transition; regrouping – social turmoil
- Lack of exercise
- Uncomfortable stalls tie or free stalls
- Inadequate feed availability
- Overcrowding, excessive competition
- Inadequate heat stress abatement







### Cows have strong behavioral need to rest ...

- Cows sacrifice feeding to make up lost resting
  - Cows sacrifice 1 minute of eating for every 3.5 minutes of lost rest
- Cows spend more time waiting in alleys to lie down than eating when overstocked
- Negative effects of short periods of deprivation are <u>cumulative</u>



Resting: ~12 h/d "Vitamin R"



- Less blood flow to mammary gland and gravid uterine horn
- Reduced feeding time, reduced rumination, increased standing
- Predisposes cows to sole hemorrhages, lameness







## What stimulates feeding behavior? • Feed accessibility & periods of empty bunks

- Feed push-up
  - More important during the day rather than at night (DeVries et al., 2005)
- Feeding frequency, delivery of fresh feed
- Biggest driver of feeding behavior is delivery of fresh feed (DeVries et al., 2003; 2005)

# Cows naturally have aggressive feeding drive ...

- Cows willingly exert >500-lb pressure against feed barrier while eating
  - 225 lb causes tissue damage
- Defines "aggressive feeding drive"
- Tie and free stalls
- (Hansen and Pallesen, 1999)













| (Friend et al.                                  | , 197                | 77)  | ///1 |       |       |
|-------------------------------------------------|----------------------|------|------|-------|-------|
|                                                 | Bunk length (in/cow) |      |      |       |       |
|                                                 | 20                   | 16   | 12   | 8     | 4     |
| Time at bunk, h                                 | 3.82                 | 3.73 | 3.73 | 3.76  | 2.57* |
| Correlation of time<br>with social<br>dominance | 0.46                 | 0.32 | 0.30 | 0.67* | 0.71* |
| % of time at bunk                               | 21.5                 | 26.9 | 34.6 | 51.9  | 70.6  |
| DMI, lb/d                                       | 35.9                 | 38.8 | 39.2 | 37.3  | 34.6  |











| Activity fror<br>(Hill et al., 2009 | n mid | night          | to 4:0           | )0 am           |
|-------------------------------------|-------|----------------|------------------|-----------------|
| % of cows:                          | 100%  | 113%           | 131%             | 142%            |
| Resting                             | 71.1  | 70.0           | 63.7             | 58.7            |
| Feeding                             | 11.8  | 12.6           | 14.6             | 15.4            |
| Standing in alley                   | 3.9   | 5.4            | 8.7              | 12.6            |
|                                     |       | Cows<br>at 142 | wasting<br>% SD; | time<br>1:00 aı |

## Milk quality and stocking density (Hill et al., 2006)

|                | 100% | 113% | 131% | 142% |
|----------------|------|------|------|------|
| Milk fat, %    | 3.84 | 3.77 | 3.77 | 3.67 |
| SCC, x 1000/ml | 135  | 114  | 169  | 236  |

>Overstocked cows eat faster (25% increase), ruminate less (1 h/d less)

>Overstocked cows experience greater pathogen load in the environment; greater teat end exposure; experience immune suppression?







| Primi- vs | multiparous        | and lame |
|-----------|--------------------|----------|
| vs sound  | COWS (Hill et al., | , 2006)  |

|               | 100% | 113%  | 131%  | 142%  |
|---------------|------|-------|-------|-------|
| Multi - primi |      |       |       |       |
| Milk, lb/d    | +5.9 | +13.8 | +21.1 | +14.9 |
| Sound - lame  |      |       |       |       |
| Milk, lb/d    | -9.4 | +1.9  | +16.7 | +13.9 |

Milk losses reflect reductions in resting and rumination activity.

#### **Cost of overcrowding:** summary of cow responses

- <u>Changes in these</u> <u>behaviors</u>: Greater aggression & displacements at feed bunk
- Greater feeding rate
- Reduced resting time
- Increased idle standing in alleys
- Decreased rumination
- Subordinate (i.e. primiparous and lame cows) most affected
- Greater SCC More health disorders
  - Increased lameness

May result in these

economic losses:

Less milk yield

Lower milk fat

Fewer cows pregnant

#### Effect on Cost of Production?





## **Rumination by primiparous cows** in preferred/less preferred stalls (Krawczel, 2007)

|                                       | Preferred | Less<br>preferred | P value |
|---------------------------------------|-----------|-------------------|---------|
| Rumination<br>time, min/d             | 81.4      | 147.8             | 0.09    |
| % resting time<br>spent<br>ruminating | 35.2      | 58.4              | 0.05    |







