

Milk Fat

- Fat is the major energy component of milk
 - Economic value
 - Physical and manufacturing properties
- Milk fat content is markedly affected by diet
 - High grain
 - Vegetable oils
 - Marine oils

Fatty Acids

- Long carbon chains that contain a methyl group (CH₃) at one end and a carboxyl group (COOH) at the other
- Fatty acids make lipids energy rich
- Characterized by:
 - Number of carbons
 - Chain length
 - Number of double bonds
 - Degree of unsaturation
 - Location and orientation of these bonds
 - Non-conjugated, conjugated, cis, trans

Nomenclature and Structure

Saturated – single bonds

$$-c-c-c-c-c-c-c-c-c$$

Unsaturated – double bonds

$$-c-c-c-c-c-c-c-c-c$$

Nomenclature and Structure

Nomenclature and Structure

non-conjugated

conjugated

Hydrolysis

Biohydrogenation

Biohydrogenation

Rumen Biohydrogenation

Fat Digestion in the Rumen

Rumen Biohydrogenation Pathways

Polyunsaturated fatty acid losses

Major Fatty Acids in Milk Fat

Fatty Acid	% (weight basis)	Common Name
4:0	4	Butyric
6:0	3	Caproic
8:0	2	Caprylic
10:0	3	Capric
12:0	4	Lauric
14:0	11	Myristic
16:0	29	Palmitic
16:1	2	Palmitoleic
18:0	12	Stearic
18:1	25	Oleic
18:2	2	Linoleic
18:3	1	Linolenic

Triglyceride Synthesis

- 98% of milk fat is triglcyeride
- Glycerol backbone with 3 ester-linked FA

Milk Fat Synthesis

Major Fatty Acids in Milk Fat

Fatty Acid	% (weight basis)	Fatty Acid Source
4:0	4	
6:0	3	De novo synthesis
8:0	2	
10:0	3	
12:0	4	
14:0	11	
16:0	29	De novo and preformed
16:1	2	
18:0	12	
18:1	25	Uptake of preformed
18:2	2	
18:3	1	

Factors Influencing Milk Fat

Nutritional Factors

- Dietary fiber
- Specific feeds
- Feeding strategy
- Ionophores

Non-nutritional Factors

- Genetics
- Stage of lactation
- Season
- Parity
- Ambient temperature

Milk Fat Depression in the Dairy Cow

- Recognized by Boussingault in 1845
- Naturally occurs with certain diets

Boussingault

Milk fat reduced but milk yield and other components unaffected

Milk Fat Depression Characteristics

- Diet-induced
 - High concentrate, low fiber
 - Low in effective fiber
 - Plant and marine oil supplements
 - Unsaturated fatty acids
- Specific for milk fat, up to 50% decrease
- Decreased yield of all fatty acids, but greatest for de novo synthesized fatty acids

MFD Changes Milk Fat Composition

Bauman and Griinari (2003)

Biohydrogenation Theory

 MFD is the result of direct inhibition of milk fat synthesis at the mammary gland by unique fatty acid intermediates formed during rumen biohydrogenation of PUFA.

trans-10, cis-12 CLA in Milk Fat

Post-Ruminal Infusion vs. Diet-Induced MFD

Change in Milk Fat trans-10, cis-12 CLA, %

C_{18:1} trans Fatty Acids

Griinari et al. (1997)

C_{18:1} trans Fatty Acids

Rumen outflow of trans -10 18:1 (g/d)

Role for trans-10 18:1

- *trans*-10, *cis*-12 *CLA* is the most extensively studied potent inhibitor of milk fat synthesis
- MFD is correlated with trans-10 rumen outflow
 - Does not directly inhibit milk fat synthesis
 - Marker of altered biohydrogenation
- Other trans and conjugated PUFA may decrease milk fat

Monensin and Milk Fat Depression

- Ionophores disrupt biohydrogenation
- Monensin targets gram positive bacteria
 - Includes group "B" bacteria that hydrogenate monenes
 - Potentially results in build-up of intermediates
 - Not a problem in normal biohydrogenation pathways

Biohydrogenation

Monensin and Milk Fat Depression

- No single risk factor for MFD
- Monensin has potential to amplify the effect of other risk factors
- Monensin decreased milk fat content 0.13%
- Decreases in fat yield seem related to increased presence of dietary unsaturated FA

Rumen Unsaturated FA Load

- RUFAL reflects total dietary unsaturated FA supply entering the rumen daily
 - Total feed ingredient fatty acid composition
 - Oleic (C18:1)
 - Linoleic (C18:2)
 - Linolenic (C18:3)
 - Marker for altered biohydrogenation

Unsaturated FA × Monensin

 Lack of available data to support interaction of monensin and unsaturated FA

Heterogeneity of data in meta-analysis

Dietary C18:1 and C18:2 Concentrations

- Total dietary EE% in parentheses
- ullet 6 fat blend trts test C18:1, C18:1², C18:2, C18:2², C18:1imes C18:2 interaction

©Ming and Armentano; 2010, UW-Madison

No monensin × C18:1 or C18:2 effect on milk fat yield

©Ming and Armentano; 2010, UW-Madison

Monensin and Milk Fat Depression

- Monensin changes the rumen environment
- Diets with the capacity to lead to MFD are further influenced by monensin
- With most diets, an effect is not observed and reductions are only apparent for content, not yield

"Butter is just a little stick of smiles and happiness" - Paula Deen

Increasing Milk Fat Yield

- Milk fat composition is easily manipulated
- Increases with saturated LCFA infusion
 - Decreases proportion of de novo FA
 - Unsaturated FA can reduce DMI
- LCFA are derived from dietary sources
- Short- and medium-chain FA are essential for milk triacylglycerol synthesis

Abomasal Butterfat Infusion

- Treatments:
 - 400 g/d butterfat
 - 245 g/d LCFA mixture matching LCFA in butterfat
- Compare effects of short- and medium-chain
 FA
- Limited infusions to avoid DMI reduction

Fatty acid

Abomasal Infusion of Butterfat Increases Milk Fat Yield

Item	Control	Butterfat	LCFA	SEM
Milk, kg/d	31.8	33.7	33.1	2.5
FCM, 3.5%	32.87	37.72	35.04	2.71
Fat, %	3.74	4.26	3.79	0.19
Fat yield, g/d	1,178	1,421	1,279	107.7

Abomasal Infusion of Butterfat Increases Milk Fatty Acid Yields

Kadegowda et al. (2008)

Increasing Milk Fat Yield

- Infusion of LCFA did not alter milk fat yield
 - FA <16:0 were not reduced, but maintained</p>
- Butterfat and LCFA similarly increased FA >16:0
 - Changes in palmitate to stearate ratios may have influenced LCFA treatment fat yields
- Medium-chain FA transfer efficiency increased with chain length
 - Yield of 14:0 was greater for cows infused with butterfat
- Short- and medium-chain FA may be limiting factors for increasing milk fat synthesis

Take Home Message

Milk fat yield can be increased with fat supplementation

Take Home Message

- Milk Fat Depression requires:
 - Altered rumen environment
 - Supply of PUFA

Take Home Message

No single factor is responsible for MFD –
interactions of potential risk factors can
change the rumen environment and increase
MFD risk.

