

Corn Supply

Tight Supply Globally

675 Million bushels by Aug 2011

China imported 1.57 tones - largest in 15 years

2nd largest exporter – Argentina 17% less

Other factors

Effects on Silage

DANISCO

Homofermentative Inoculants

- High Lactic Acid Production
- Low pH levels
- Improved DM Recovery
- Slightly improved animal performance

What to Look for in an Inoculant

DANISCO

- Min. 100,000 cfu/g of crop
- Must have viable lactic acid bacteria
- Produce lactic acid
- Grow over a wide of pH, moisture,
- Ferment a wide range of plant sugars

Cost of Scours

- → Calf Scours:
 - 7.8% of calves die prior to weaning
 - 56.7 of calf deaths are associated with scours²
 - Veterinary costs for preweaned claves - \$17.26 per calf¹
 - Calves treated for scours are 2.9 times more likely to increase age to first calving⁴

Omni-Bos ^{ce} Development	Bacillus Bacteriocin Screening Results							
 Identified and characterized calf pathogens Over 1,000 rectal swabs and GIT samples from clinically ill calves Geographical areas: CA, WI, IA, OH and PA Different neonatal calf production types 	Selecte calf a	Selected strains of <i>Bacillus</i> with ability to inhibit growth of calf associated pathogens						
	Pathoge	en type	Isolates	Genotypes	Inhibition*			
 Selected strains of <i>Bacillus</i> with ability to inhibit growth of calf associated pathogens 	Salmone	ella	181	64	99%			
✓ In vitro growth inhibition studies*:	Escheric	chia coli	126	17	100%			
To as	Clostridit * Represen	um perfringens Type A	917 t were inhibit	155 ed at 50% or gre	89% ater			
					10			

Summary

- A Specialized Formulation of Highly <u>Stable</u> Bacillus to Minimize Pathogenic Challenges
- Significant reduction in pathogenic CP
- Promotes Healthy, Efficient Calf Growth
- Milk Replacer or Therapeutic Treatments
- Improved Immune Status
- Reduced Medication Cost
- Improved Performance

Comni-Bos^{CB}

Improved economic re	eturn fro	om poul	try diets	DANISCO First you add knowl	0 *dg*				
Return on investment up to 10.3:1									
	Trial 1		Tria						
	Control	Enviva Pro ¹	Control	Enviva Pro ²					
FCRc	1.77 ^a	1.72 ^b	1.78 ^a	1.72 ^b					
kcal/kg weight gain	5420	5266	5467	5282					
Increase in caloric efficiency		2.8%		3.4%					
Improvement in cost/k body weight gain	9	2.6%		2.81					
^{a,b} P<0.05, ¹ 75 000 cfu/g of feed, ² 15	0 000 cfu/g of fee	ed FCRc: cor	rected 3 points per	100g live weight dif	ference				
Amerah and Gracia (2011)									

