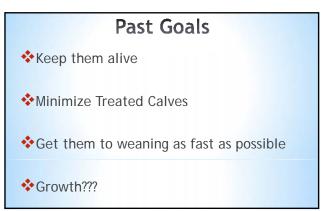


Our objective: Do what's right for the calf by continuing to lead the industry towards improving the health, performance and profitability of raising calves and heifers.

Special Thanks to:

Dr. Mike Van Amburgh (Cornell)


Dr. Don Sockett (Wisconsin Veterinary Diagnostic Lab)

✤High Health ✤ 3-5 Trials per Year * 300+ Calves Heifers & Bulls

Improving Calf Health

Reduce Failure of Passive Transfer (FPT): Gram negative sepsis

Does fixing this stop all calf health issues?

Why Not?

Improving Calf Health

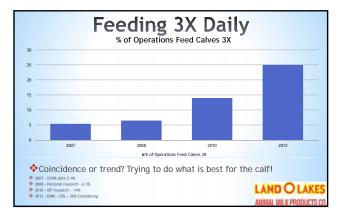
Higher plane of nutrition at right temp.

- Consistent milk/milk replacer
- High quality water
 - Free Choice & mixing
 - Electrolytes
 - Cleaning water

What is a Higher Plane of Nutrition?

Is this enough?	Tempera		
v is this chough		32	
	100 lb. Bodyweight		
	Dry Matter	<u>1.5</u>	
	Qts/day	6.0	
	Qts/fdg (2X)	3.0	
	Qts/fdg (3X)	2.0	
	Qts./fdg (2X) at 15% Solids	2.3	

Other than Temperature - What Else Impacts Energy & Protein Needs?


- Short of bedding one day
- Out of grain/water for a short time
- Changes in weather
- Scours even minor cases
- Respiratory disease even minor cases
- Moderate infections increase energetic needs by 150 to 200%

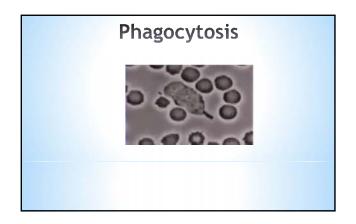
* Lochmiller, R. L. and Deerenberg, C. 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? - Oikos 88: 87-98.

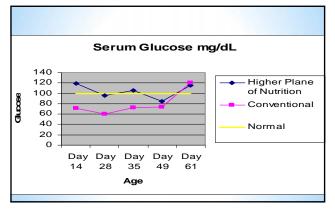
So should I just add Fat?

- Typically added fats are 7% protein and 60% fat
 It is not a balanced diet!
 - Will quickly be short of protein
 - Shorter, fatter calves poorer feed efficiency
 - Fat adds to total solids, causes mixing and cleaning problems
 - Fat is not quickly nor efficiently utilized by the calf!
 Fat above 20% of diet dry matter hinders starter intake
- Best option is to feed more milk/milk replacer!!

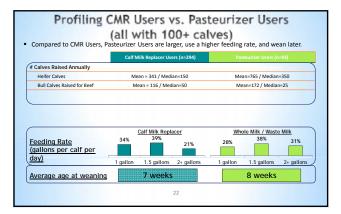
Consider an automated calf feeding system?

- An efficient tool for delivering a higher plane of nutrition
- Land O'Lakes has 7 years of research on the feeders (>2100 calves)


Body Condition Evaluate energy reserves "fat storage".


Good

Ever heard someone say "Look at my skinny baby!"


Fowler 2004

Ballou et al. 2015

These data also indicate that the innate leukocytes of Jersey calves fed a higher plane of nutrition are increased more rapidly after an oral challenge with a Salmonella typhimurium. The more active innate leukocyte responses likely reduced the incidence of systemic inflammation."

ADSA Full Potential

Abstract 24 Brown at Guelph 8 better (19.6# bigger at 70 days) than 6 week weaning when feeding 2.6 lb/d CMR

Abstract 619 Hammon German/Slovakia Title: <u>Intensive milk</u> feeding (vs. 1.65# CMR) in calves affects growth performance, metabolic and endocrine traits, but not rumen development. Better growth, no diff in starter intake.

Milk Yield Response to Increased Pre-weaning Milk or Milk Replacer Nutrient Supply

Study	Milk yield, lb
Foldager and Krohn, 1991	3,092
Bar-Peled et al., 1998	998
Foldager et al., 1997	1,143
Ballard et al., 2005 (@ 200 DIM)	1,543*
Shamay et al., 2005	2,162
Rincker et al., 2006 (proj. 305@ 150 DIM)	1,100
Drackley et al., 2007	1,841
Raith-Knight et al., 2009	1,582**
Terre et al., 2009	1,375 **
Morrison et al., 2009	0 ^{ns}
Moallem et al., 2010	1,600
Soberon et al., 2011	1,216
Milk response is the difference between treatment r * P < 0.05. ¹ P < 0.1. ^{rs} P > 0.1	nilk yield minus contro

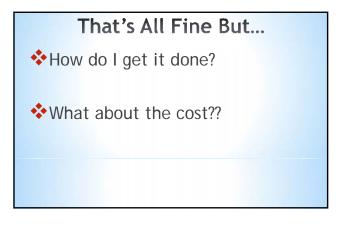
2015 Virginia State Feed Association & Nutritional Management "Cow" College Earleywine | Land O Lakes

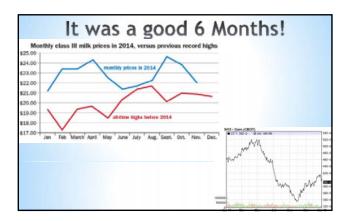
Impact on Milk Production

11/12 University Trials show improved milk production (1000 to 3000 lb. more milk in 1st lactation) by providing a higher plane of nutrition in the first 8 weeks of life of the heifer.

New Data:

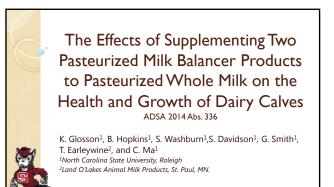
 Daniels LACTATION BIOLOGY SYMPOSIUM The long-term impact of epigenetics and maternal influence on the neonate through milk-borne factors and nutrient status 2013 JAS 91 673-675
 Soberon LACTATION BIO SYM The effect of nutrient intake from milk or milk replacer of dairy calves on lactation milk yield as adults - A meta-analysis of current data 2013 JAS 91 706-712 Margerison The effect of increasing the nutrient and amino acid concentration on intake, growth, development, and lactation performance 2013 JDS 96 96 6539-6549


Plantoni Daniels Level of nutrient intake affects mammary gland gene expression profiles in preweaned calves 2012 JDS 95-2550-2561

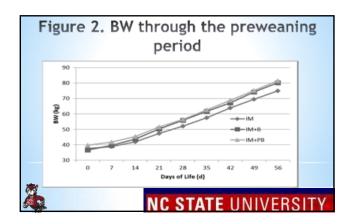

Economic Comparison of Conventional vs. Intensive Heifer Rearing Systems (with new higher feed prices, \$175 calf, 7% interest, \$18 milk)

Michael Overton, DVM, 10171 Î The University of Georgia KNOWLEDGE

		Advantage
Feed costs	(\$61)	Conventional
Labor costs	\$29	Intensive
Health/ vet med	\$11	Intensive
Interest cost	\$10	Intensive
Reproductive culls	\$10	Intensive
Other costs	\$33	Intensive
Lost investment (dead calves)	\$12	Intensive
Calf investment cost	\$4	Intensive
Net Result - Savings:	\$47	Intensive


Will Future Milk Replacers be all-milk Protein?

Not likely but will perform as good or better than all-milks at significantly lower cost!


Will use less alternatives than they have in the past.

♦ Ask for the research!

	Full Potential	Full Potential Protein Blend	P Value	
Number Calves	142	141		
Avg. Period Gain, Ib	95.			
Week 1	5.78	5.23	-	
Week 2	13.23	13.12		
Week 3	12.30	12.95		
Week 4	12.63	12.68		
Week 5	12.40	12.81		
Week 6	14.96	14.86		
Week 7	11.63	12.87	0.08	
Total Gain	82.93	84.52	_	

NC STATE UNIVERSITY

NC STATE UNIVERSITY

What is this New Formulation System -Protein Blend?

Utilizes a similar approach as is used in baby formulas

Based on a blend of highly digestible proteins that complement each other

Why Does it Work?

- WELL RESEARCHED!
- Still include technologies we always have such as;
 - Beta glucan for immunity
 - FOS for proper gut microbial growth
 - MOS gut protection
 - Many other technologies fatty acid formulation, etc.
- We make formulation adjustments to assure performance


Summary - Trends

Feeding More!

- Calves need nearly 2 gallons of milk/milk replacer daily in 2 to 3 feedings to survive and thrive
- New Formulation Options of milk replacers.
 - need to be well researched
 - These options are the future of milk replacer

Summary - Trends

- Water Quality Analyses
- Cleaning & Sanitation Protocols
- Enhancing Pasteurized Milk Nutrition with Powder/Technologies
- Better Housing Options

Do what's **right for the calf** by continuing to lead the industry towards improving the health, performance and profitability of raising calves and heifers.

