

Colostrum Management

- Quality, quantity, quick and clean
- >85% of 1st milking colostrum over 50 g/liter
- Using Brix Refractometer
 - Not temperature sensitive
 - More durable than colostrometer
 - Readings > 22 indicate good quality colostrum
 - RID values > 50mg IgG/mL

Clean colostrum

It's a race between bacteria in the environment or the initial feeding and the antibodies in colostrum.

Figure 1987	important
	Early consump of colostrum exposure to ?
probes. Fig. 4, the drypholid cells from a cell which had recorded columns grate to F. cal war undered ground.	Colostrum pr

Pasteurization of colostrum	
 Batch pasteurize: 60 °C x 60 min No viscosity changes No change in colostrum IgG (mg/ml) Significantly reduce or eliminate M. paratuberculosis, Salmonella, Mycoplasma bovis, E. coli, Listeria 	
(McMartin et al. JDSci. 2006. 89:2110 Godden et al., JDSci. 2006. 89:3476)	
9	

Recent UMN Field Study M. Donahue, S. Godden

- 1,000 calves / 6 herds
 - ½ fed raw and ½ fed heat-treated colostrum
- Colostrum total plate count and serum IgG negative
- Colostrum IgG concentration positive
- Heat treatment positive independent of Total plate count
- Colostrum Total Coliform Count and risk of scours – positive.

11

Disconnect between critical control points! -

- Location
 - Calving area
 - Fresh cow milking
 - Calf housing
- People who is responsible?
 - Fresh cow milking?
 - Colostrum handling?
 - Calf feeding

12

		_			

Disconnect cont'd Quality Colostrum handling – Feed immediately or cool as soon as possible Rapid cooling – frozen Coke bottles in bucket. 6 hours at room temp = 6,000,000 frozen. Clean containers Hot soapy water

Two recent herd visits

- - >25,000,000 /ml SPC, >15,000 coliform /ml, E. coli TNTC
 - 8 calves < 7 days serum protein 3.9 4.6 g/dl.
- Dairy 2

 > >25,000,000/ml, >15,000 coliform, E. coli
 TNTC -
- 9 calves < 7 days serum protein 3.9 5.2 g/dl

Newborn calf protocols

- Facilities for calving to obtain calves as soon as possible
- Clean calving environment
- Colostrum handling protocols feed or cool ASAP
- Feed calves by bottle as soon as possible as much as they will drink! 2 – 3 quarts
- Esophageal feeder as last resort

Quality of incoming milk Location PrePasteurization Protein % Fat % - Aerobic plate count High High Low High 1 x 10⁸ 300,000 1.5% 4.5% 2.7% 3.8% East 12.1% 1.2% 2.7% 4.7% 26,000 5.9 x 10⁶ West 6,000 7.2 x 10⁷ 2.8% 4.7% 2.9% 5.1% WI

Factors influencing microbial growth in waste milk

- Exposure of milk to flies, manure, dirt
- Cleanliness of storage tanks and length of time milk is held prior to pasteurization.
- Temperature of milk during storage
- Cleanliness of pasteurization equipment
- Cleanliness of bottles, tanks, buckets receiving pasteurized milk.
- Microbial content of milk from the cow

Pasteurizer cleaning

- Rinse <u>warm</u> water
- Caustic detergent
- Sanitize with acid cleaner
- Never allow HTST unit to run dry. Commercial machines have automatic flow sensors to prevent "cooking" of milk between plates.
- Cleaning "batch" pasteurizers?

Cleaning of feeding devices Cleaning of hoses and nozzles Equipment which lends itself to effective cleaning

Options to meet shortfall in waste milk supply

Compromise between nutrition of calf and expense

- 1. Additional saleable milk from bulk tank
- 2. Supplement waste milk by adding solids from milk replacer, whey protein and/or fat supplements
- 3. Switch calves to milk replacer.

Pasteurizer Conclusions

- Pre Past storage is key
 - Cooled, agitated
- Post Past handling important
 - Automatic tank washers
- Timing is important
 - Milking, storage, pasteurization, feeding
- More waste milk per calf on west coast
- Hot water supply/protocols for employees

Little things in feeding calves

Variation in Milk Replacer Feeding

- Where does variation arise?
- How big is a cup?
- How full is the cup?
- How much water is added?
- What temperature is the water?
- What is water quality?
- How to reduce variation?

Reducing variation?

- Replace cups with scales?
- 12.5% solution = 1.25 lb. powder/8.75 lb. water = 10 lb. final volume.
- Water temperature finger or thermometer?

Water Management

Clean and plenty

of it!

The "little" things are "big" things! Dry cow appetite and basic nutrient needs met. Calving environment Facilities and protocols for colostrum management Consistency in liquid feeding program DM% and volume Water and calf starter intake to promote early weaning.