Adapting to a Changing Climate: Forages for Drought Prone Conditions

Chris Teutsch
Southern Piedmont AREC
Blackstone, VA

Atmospheric CO2 Levels

For 650,000 years, atmospheric CO2 has never been above this line... until now.

Drought in Mid-Atlantic Region

- Records indicate (Dickerson and Dethier, 1970)
 - Moderate drought one out of five years
 - Severe drought one out of ten years
- Always seems to be a surprise
- Need to manage forage production systems for drought everyday
- Every farm needs a drought plan

Topic Outline

I. Photosynthetic pathways
II. Summer annual variety testing in VA
III. Crabgrass for summer grazing
IV. Forage sorghum as silage
V. Discussion
Cool- and Warm-Season Grasses

- **Cool-Season Grasses: C3**
 - optimal growth at cooler temps (70 F)
 - more digestible and higher in CP
 - longer growing season
- **Warm-Season Grasses: C4**
 - optimal growth at higher temps (90 F)
 - less digestible and lower in CP
 - more drought tolerant
 - more efficient at using water

Growth Curves for Common Forages

Adapted from Controlled Grazing of Virginia's Pastures, Publication 418-012
Summer Annual Variety Trial

• Conducting trials since early 2000s
• Recently evaluating digestibility
• Sorghum-Sudangrass, sudangrass, forage sorghum, and pearl millet
• 75 lb N/A at seeding and 60 lb N/A after each harvest
First Harvest-SAVT 2009

<table>
<thead>
<tr>
<th>Variety</th>
<th>Species</th>
<th>BMR</th>
<th>Yield (lb DM/A)</th>
<th>IVTD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canex</td>
<td>FS</td>
<td>Yes</td>
<td>6848</td>
<td>74</td>
</tr>
<tr>
<td>XtraGraze</td>
<td>SS</td>
<td>Yes</td>
<td>5277</td>
<td>68</td>
</tr>
<tr>
<td>Haymaster2</td>
<td>SG</td>
<td>Yes</td>
<td>4390</td>
<td>64</td>
</tr>
<tr>
<td>SS501</td>
<td>PM</td>
<td>No</td>
<td>4820</td>
<td>54</td>
</tr>
<tr>
<td>Hayking</td>
<td>SG</td>
<td>Yes</td>
<td>4524</td>
<td>58</td>
</tr>
<tr>
<td>Promax</td>
<td>SG</td>
<td>Yes</td>
<td>3765</td>
<td>64</td>
</tr>
</tbody>
</table>

LSD (0.10)

<table>
<thead>
<tr>
<th>Yield (lb DM/A)</th>
<th>IVTD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1061</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Yield and Digestibility-2009

Summer Annual Variety Trial 2009

<table>
<thead>
<tr>
<th>Yield (lb DM/A)</th>
<th>IVTD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>58</td>
</tr>
<tr>
<td>6000</td>
<td>60</td>
</tr>
<tr>
<td>7000</td>
<td>62</td>
</tr>
<tr>
<td>8000</td>
<td>64</td>
</tr>
</tbody>
</table>

In Vitro True Digestibility (%)

![Graph showing the relationship between yield and digestibility]
Impact of BMR Trait-2009

![Bar chart showing BMR and Non-BMR In Vitro True Digestibility]

- BMR: 53 to 77%
- Non-BMR: 58 to 72%

Impact of BMR Gene-2009

![Bar chart showing In Vitro True Digestibility for different genes]

- Gene BMR-6: 66%
- Gene BMR-12: 68%
- Gene BMR-18: 70%
- Gene Non-BMR: 64%
Range of Means within Gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>IVTD Range</th>
<th>Varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-BMR</td>
<td>63-68</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>65-72</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>58-75</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>66-74</td>
<td>2</td>
</tr>
</tbody>
</table>

Yield and Digestibility-2009

Summer Annual Variety Trial 2009

![Graph showing yield and digestibility differences](image)
Variety Performance

- Above average yield and digestibility for both 2009 and 2010
 - Xtragraze, SS, BMR-6, Evergreen Seed
 - AS9301 or SS140, SG, BMR-6, Advanta Seed
 - AS6501, SS, BMR-6, Advanta Seed
 - 22050, SS, BMR-6, Advanta Seed

Variety Performance

- Above average yield and digestibility for both 2009, 2010, and 2011
 - AS9301 or SS140, SG, BMR-6, Advanta Seed
 - AS6501, SS, BMR-6, Advanta Seed
Summary and Recommendations

• BMR trait increased digestibility
• No single BMR gene appeared to be superior
• Range in digestibility was great within both BMR trait and BMR gene
• Need to consider both yield and digestibility when selecting or recommending varieties

Crabgrass

• Well adapted to mid-Atlantic region
• Annual that acts like a perennial
 – Self-reseeding
• Double cropped
 – Winter annual
• Good yield potential
• Excellent forage quality
 – Higher than bermudagrass
• No prussic acid
• Can accumulate nitrates
Red River Crabgrass

First Harvest in 2001
(60 days after seeding)

Nitrogen Rate: Total Seasonal Yield

\[y = 3940 + 32.93x - 0.0539x^2 \]

\[r^2 = 0.70 \quad P < 0.0001 \]

305 lb N/acre
Forage Quality

- In Vitro Digestibility
 - 75 to 90% (Teutsch et al., 2005)

- Crude Protein
 - 6 to 14% (Teutsch et al., 2005)
 - Increased with nitrogen fertilization

- Average Daily Gain (Dalrymple, 1994)
 - Poor to fair quality crabgrass: 0.6 to 1.5 lb/day
 - Medium quality crabgrass: 1.85
 - Excellent quality crabgrass: 2.35
 - Bermudagrass: 1lb/day, Crabgrass: 1.75 lb/day

Summer Annuals

- Supply forage during summer deficit periods

- Opportunities
 - fast germination and emergence
 - rapid growth
 - high productivity and quality
 - flexibility of utilization

- Challenges
 - Annual establishment cost?
 - increased risk of stand failures
 - Limited growth due to drought
Summer Annuals

• Supply forage during summer deficit periods

Profitable grazing systems will be based on well adapted perennial sods that are supplemented with annuals.

– Annual establishment cost
• increased risk of stand failures
 – Limited growth due to drought

Drought Corn/Sorghum
Materials and Methods

- Corn planted and forage sorghum alone or in a mixture in late May
 - 2, 4, 6, and 8 lb forage sorghum/A
 - BMR dwarf forage sorghum
- 100 lb N/A at seeding
- Harvested at soft stage

Summer of 2010
Summer 2010

Corn and Forage Sorghum-2010

Adjusted Yield (lb/A at 35% DM)

- Corn Alone
- Corn + 2 lb/A Forage Sorghum
- Corn + 4 lb/A Forage Sorghum
- Corn + 6 lb/A Forage Sorghum
- Corn + 8 lb/A Forage Sorghum
- Forage Sorghum Alone

2010

- Corn Alone
- Corn + 2 lb/A Forage Sorghum
- Corn + 4 lb/A Forage Sorghum
- Corn + 6 lb/A Forage Sorghum
- Corn + 8 lb/A Forage Sorghum
- Forage Sorghum Alone

Adjusted Yield (lb/A at 35% DM)
Corn and Forage Sorghum-2011

2011 Forage Sorghum Variety Trial
Adjusted Silage Yield in 2012

Plant Yield Components in 2012
Seeding Rate Averaged Over N Rate Study

Average yield for VA State Corn Silage Variety Trial, Blackstone location.
Drought Stressed Corn in 2011

N Rate Averaged Over Seeding Rate

Average yield for VA State Corn Silage Variety Trial, Blackstone location
Where does forage sorghum fit into silage production systems?

- NOT going to replace corn!!!
- Best fit on droughty soils that are marginal for corn silage production
- Geographic areas that are prone to drought?
- Delayed or late silage plantings
- Rotation with corn for Johnsongrass control