Risks and Benefits of Milk vs. Milk Replacers for

Dept. of Dairy Science

March 2016

- Low milk prices????
- Incentive to lower SCC?
 - Divert milk from high SCC cows to feed calves?

Limited digestive enzymes in the calf – 2 – 4 weeks of age

- Lactase
- Renin forms clot
- Pepsin digests casein and whey proteins
- Limited ability to digest until 3 weeks of age.
 - Starch
 - Vegetable proteins

- Best growth with all milk ingredients for the 1^{st} 3 4 weeks
- Whey proteins, lactose, digestible fat sources
- Not the time to feed a low cost milk replacer.

Biology of the calf

- Requirements for maintenance
 Environmental temperature
 - Environment moisture, wind, hair coat?
- Requirements for growth?
 - How much should a calf grow? Week 1, 2, 3.....?
 - What is growth? Body composition?

The pros and cons of feeding milk!

• Duh!!! That's what it's made for – feeding calves, not making cheese or feeding people!

Preweaning growth and health of MN dairy calves fed equal volumes of pasteurized waste milk or 20:20 milk replacer (>400 calves)

12

	Past. Waste Milk	20:20 Milk Replacer
Ave. Daily Gain	1 lb	.77 lb
Proportion treated	11.6%	32.1%
Proportion died	2.2%	12.1%
Energy allowable gain	.8 lb	.4 lb

WASTE MILK CALVES RECEIVED MORE DM, ENERGY AND PROTEIN/DAY.

(Godden et al. JAVMA, 2005)

What is the message of this research???

V	What is nutrient content of whole milk ?					
Mi	lk	DM%	Fat%	Prot%	Lactose	Ash%
Hols	tein	12.3	3.6	3.0	5.0	.7
Jers	sey	14.5	5.0	3.8	5.0	.7
		Nutri	ent conten	t on DM I	Basis	
			Fat	%	Protein%	
	H	lolstein	29.3		24.4	
		Jersey	34.	5	26.2	
	20	:20 CMR	20	?	20 ?	

What milk to feed calves?

- Tank milk?
- "Waste milk"?
- What is waste milk?

Waste milk on CA operations

	mean	minimum	maximum
Fat (%)	3.8	1.1	5.3
Protein (%)	3.7	2.9	4.7
Total Solids (%)	12.7	8.9	15.3
SCC (cells/ml)	2,072,727	1,000,000	4,500,000
SPC (cfu/ml)	1,681,869	3,000	5,900,000
Volume (L/calf/d)	5.25	3.67	7.57

Milk parameter, (%, on liquid basis)	Least squares means	SD	Minimum	Maximum
PWM solids (%)	11.64	1.066	9.02	13.18
PWM protein (%)	3.12	0.303	2.27	3.56
PWM fat (%)	3.51	0.585	1.94	4.66
Bal solids (%)	13.64	1.238	10.22	15.09
Bal protein (%)	3.87	0.445	2.90	5.09
Bal fat (%)	2.89	0.386	2.16	3.65

What are the goals for waste milk?

- SPC (bacteria count) < 20,000 cfu/ml
- SCC ?????
- Total solids level 12 13%
- Key factors for success with waste milk!
 Treat waste milk for calves just as you would "sold" milk!
 - Receiving containers, cool or feed immediately
 - Sanitation

Challenges of feeding milk

- Bacterial growth between harvest and feeding.
 - It grows bacteria clean receiving containers
 - Timing between milking and feeding feed immediately or cool
- Does your herd have:
- Mycoplasma
 - Johne's
- BVD?

James - 2016 Area Dairy Conferences

How much milk do you need to feed your calves.

- "Average" herd 200 cows
- How many calves? 35 40 on milk
- How much to feed? 16 lb. / day
- 560 lb. required.
- How many cows ~ 11 cows @ 50 lb. / day.
- Should you have this many "hospital" or fresh cows?

The pro's and con's of feeding milk replacer

- Quality control IF purchased from reputable manufacturer.
 - Digestibility of protein and fat sources
 - Low bacteria count
 - No disease risk
- Opportunity for more consistency
 - Weigh water and powder
 - Measure temperature

Alternative (Non-Dairy) Proteins

• Soy Flour is the finely powdered material resulting from the screened and graded product after removal of most of the oil from selected, sound, cleaned and dehulled soybeans by a mechanical or solvent extraction process. It must contain not more than 4.0% crude fiber. (AAFCO definition)

Typical Analysis
50 – 53%
1.0 – 1.5%
2.5 – 3.3%
5.0 - 6.5%

Soy dehu non-	Protein Concentrate Protein Concentrate is prep ulled soybean seeds by rem protein constituents and mu pisture-free basis. (AAFCO of	st contain not less than 659	id, clean, ater soluble % protein on
		Typical Analysis	
	Protein (N x 6.25)	66 - 70%	
	Fat	1 – 2%	
	Fiber	<4.5%	
	Moisture	4 – 6%	
	Ash	4 – 7%	

• Hydrolyzed Wheat Protein (Gluten)

	Typical Analysis
Protein (N x 6.25)	79 - 81%
Fat	5 - 7%
Fiber	<0.5%
Moisture	3 – 5%
Ash	<1.0%

Trial Design								
% PROTEIN CONTRIBUTION By Protein Source								
MILK	50	40	30	50	40	40	30	100
NON-MILK								
Soy Protein Conc.	50	50	50	40	40	50	50	-
Wheat	-	10	20	10	20	-	10	-
Plasma	-	-	-	-	-	10	10	-
▶ SPC ▶ PLASMA ▶ WHEAT ▶ MILK		9	9	1	1	1	0	ullet
TREATMENT #	1	2	3	4	5	6	7	8

Ingredient	Mean Digestibility
Skim Milk	92.4
Whey Protein Concentrate	87.0
Whey Protein Isolate	91.4
SPC (42d of age& >)	87.4
SPC (< 21d of age)	58.7
Modified Soy Flour (>21 d of age)	72.0
Soy Flour	63.0
Soy Isolate	60.5
Casein	84.8
Skim & Casein	83.0

Are alternative protein source recommended for calves <3 weeks old?

Energy allowable gain whole milk vs. 20:20 CMR Week 1						
Calf	Whole	e milk	20:20 Milk			
	68 F	32 F	68 F	32 F		
30 lb calf – week 1 1 lb DMI	.85 lb/day	.19 lb/day	.64 lb/day	No gain		
30 lb calf week 1 1.5 lb DMI	1.68 lb/day	1.15 lb/day	1.15 lb / day	.85 lb /day		

	by	•		
Amount of DM intake	500g (1.1 lb)	1000g (2.2lb)	500g	1000g
	g of p	rotein	g of fat	
20:20 milk replacer	100	200	100	200
28:20 milk replacer	140	280	100	200
Whole milk 4L@ 12.5% DM)	130	260	150	300

٦

Calves will grow well on either milk or milk replacer

Calf Feeding Trial

· Objective

Г

 Evaluate a possible strategy to supplement waste milk with 28:20 milk replacer

M. C. Scott - M.S. research

• Feeding rates - determined at birth

Cost of milk or milk replacer

 Assumptions – 2.155 lb. of solids
 – 2 gallons of whole milk, 28:20 CMR, 20:20 CMR @ 12.5% solids

Lb protein	Lb fat
.55	.66
.60	.43
.43	.43
	.55 .60

Diet	Energy allowable gain	Protein allowable gain	\$/lb of DM	\$/Ib of protein allowable gain
Whole milk	2.2	1.86	\$1.20 / \$1.60	\$1.39/1.85
28:20 CMR	1.94	2.09	\$1.07	\$1.02
Whole milk	- \$15/cwt = \$1.2	20/ lb of DM;\$2	20/cwt = \$1.60/lb	of DM

- Calf Milk Replacer
 - Lower cost / lb of gain
 - Less risk of disease
 - Quality control
 - Opportunity for consistency
 - Temperature?
 - Solids level?

Take home message

- Consider all the facts
- If you have enough waste milk to feed all your calves...... You have a herd health problem!!
- Improve herd health and reduce size of hospital string
- Feeding high quality milk at high rates promotes calf growth
- Manage risk well.

-

