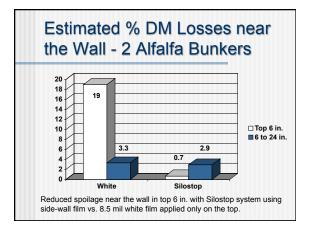
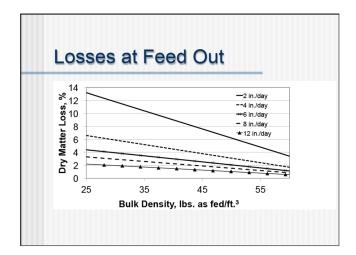
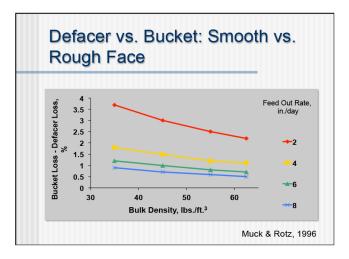


 – 8.5 mil White vs. Oxygen Barrier Film 					
	Depth, in.	pH	Lactic Acid	Acetic Acid	L:A
Haylage					
White	0-6	4.89	2.5	4.0	0.6
Silostop	0-6	4.82	4.5	2.2	2.1
White	6-12	4.82	4.5	1.7	2.6
Silostop	6-12	4.75	3.8	1.4	2.7
Corn					
White	0-6	4.02	3.2	1.6	2.0
Silostop	0-6	3.98	3.0	1.2	2.6
White	6-12	4.00	4.1	1.4	2.9
	6-12	3.97	3.9	1.2	3.1
Corn White Silostop	0-6 0-6	4.02 3.98	3.2 3.0	1.6 1.2	

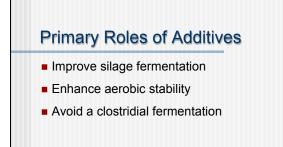
even though no difference in DM loss.







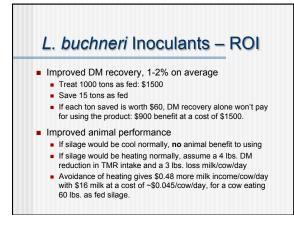
Goal in Unloading Silos


- Minimize oxygen exposure
- In a well-packed bunker or pile, oxygen moves back approx. 3 feet from face.
- So at 6 in./day removed from the face, silage is exposed to oxygen for 6 days before the cows get the silage.

Homolactic Acid Bacteria

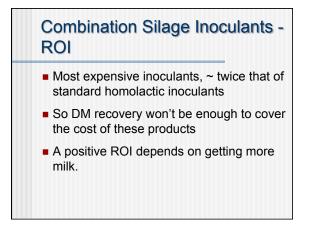
- Shift fermentation to lactic acid
- Lower pH
- Helps avoid clostridial fermentation
- Reduces DM losses
- Some strains have improved milk production more than others but not exactly sure why.

Homolactic Silage Inoculants – ROI


- Improved DM recovery, 2-3% on average
 - Treat 1000 tons as fed: \$1000

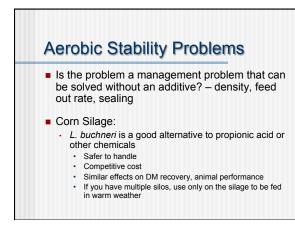
is \$0.03/cow/day

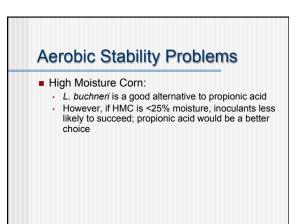
- Save 25 tons as fed
- If each ton saved is worth \$60 or more, ROI = 1.5
- Improved animal performance 3-5% when effective
 - Assume 3 lbs. milk/cow/day when effective
 If effective 50% of the time, 1.5 lbs. milk/cow/day
 - If effective 50% of the time, 1.5 lbs. milk/cow/day
 - With milk at \$16 per 100 lbs., \$0.24 extra income/cow/day
 If cow is eating 60 lbs. silage as fed/day, then inoculant cost

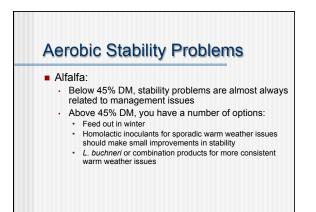

Lactobacillus buchneri

- Heterolactic acid bacteria
- Ferments lactic acid to acetic acid
- Improves aerobic stability
- Alternative to the long-standing chemical approaches: propionic acid, acetic acid, potassium sorbate, sodium benzoate



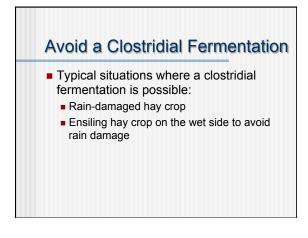

Combination Inoculants


- L. buchneri or L. brevis plus homolactic acid bacteria
- Improve silage fermentation and aerobic stability
- However, not for avoiding a clostridial fermentation



Issues with L. buchneri

- However, slow grower that takes 45-60 days storage time before having much effect
- So, not an answer to heating problems with immature silage; propionic acid is the best solution for this case
- Not a solution at feeding time


Make a Good Silage Better

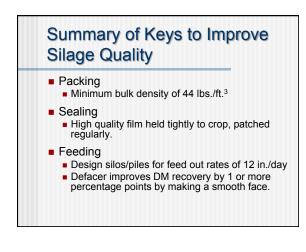
Homolactic inoculants are the best route to improve DM recovery, animal performance

- Good fit for hay crop silages, HMC
- Best success under:
 - Good harvesting conditions
 - Very good silo management

Make a Good Silage Better

- Corn Silage:
 - Homolactic inoculants can reduce aerobic stability
 - · Inconsistent success rate
 - · Best fit: silage to be fed in cool weather
- HMC:
 - Much higher success rate than corn silage
 - Best fit: HMC to be fed in cool weather

Steps to Avoid Clostridial Silage


- 1. Use a homolactic bacterial inoculant to get pH as low as possible
- 2. Ensile separately in a pile or bag
- Feed out early. Start 2-4 weeks after ensiling before clostridia become established.

Issues with Any Additive

 Application rates below the recommended level compromise the effectiveness of the product.

Issues with Any Inoculant

- These products work only if the bacteria go on the crop alive!
 - Store them properly: generally cool and dry
 - Don't use chlorinated water to dilute unless the chlorine level is less than 1 ppm
 - Watch out for high temperatures (> 100°F) in inoculant tank on chopper
- These bacteria cannot move around; they depend on you to spread them uniformly

