

Item	Lactic Acid	Wilted	Clostridial	Acetic Acid	Sterilized
Moisture, %	81.0	69.2	83.0	82.4	78.8
pН	3.9	4.2	5.2	4.8	5.1
Ammonia N, % of N	7.8	8.3	24.6	12.8	3.0
Lactic Acid, %	10.2	5.9	0.1	3.4	2.6
Acetic Acid, %	3.6	2.4	2.4	9.7	1.0
Butyric Acid, %	0.1	0.1	3.5	0.2	0.1
WSC, %	1.0	4.8	0.6	0.3	13.3

Silage fermentation is restricted by the lower moisture content of baled silage I lack of chopping action in baled silages forces sugars to diffuse from inside the plant to reach lactic-acid producing bacteria adhered to the outside of the forage I although dependent on many factors, baled silage may be less dense (DM/ft³) than some other (chopped) silo types, which also may restrict availability of sugars to lactic-acid producing bacteria

Crop/Species	WSC, % of DM
Corn Silage	10 - 20
Forage Sorghum	10 - 20
ıdan, Sorghum-Sudan, Millet	10 - 15
Rye, Oat, Wheat, Triticale	8 - 12
Ryegrass	8 - 12
Alfalfa	4 - 7
Bermudagrass, Stargrass	2 - 4
Bahiagrass	< 5
Limpograss	< 5
Perennial Peanut	1 - 4

Forage crops differ; learn their characteristics. Most principles of management for conventional chopped silage still apply to baled silage. Moisture management is critical; generally, baled silage techniques will accommodate drier (<50%) forages better than relatively wet (>60%) ones. Fermentation occurs at a slower rate for baled silage because forages are: ensiled on a whole-plant basis usually drier and less dense than chopped silages

As a result, producers should diligently address other management details: maximize bale density (> 10 lbs DM/ft³) consider an inoculant (LAB) if forage is damaged, manure has been applied, or if bale moisture approaches 60% (alfalfa); grasses are a bit more forgiving apply plastic wrap promptly and properly (damage is likely relatively minor up to 24 hours) protect the product (4 plastic layers is the minimum, 6 or 8 are better) stabilize your investment by excluding air (select a good storage site, check and repair holes)

Summary

