

What is Graze 300

- Graze 300 is a "systems" approach to forage and livestock management to extending the grazing season and reduce feed costs
- Optimization of stocking rate, forage resource, labor resource to maximize net return to labor, land and capital.
- Goal is 300 days of grazing as optimum

Cow-Calf Production Costs

- IRM-SPA data states that the greatest impact on profitability is variability on costs.
- Feed costs are #1; 60% of variability
- Trends: Big farms are getting bigger
- Need for all farms to be low cost producers

CGrann, et al., Guidelines for Production and Financial Performance Analysis For cow-Calf Producers, NCBA, Extension Beef Cattle Resource Comm. 1993.

Maximizing Grazing Days

- Improving forage management is a process
 - Infrastructure Fence and Waterers
 - Grazing System Design
 - Implement/Improve Rotational Grazing
- Every day grazed will net +\$0.35/cow
 - More with more intensive management

How Do We Maximize Grazing Days?

- Managed Rotational Grazing System
 - Crossfencing
 - Water
 - Take half leave half principle
- Delay Turnout Late April
 - Always allow grass a headstart
- Stockpile
 - Objective 20%-25% of total acreage
- Intense grazing of stockpile

This side courtesy of David Fisk and Jon Renair

Operation Goal: Extend Grazing • What grazing records do we have now?

- What management do we have?
- · What is our overall stocking rate?
- · How much hay have we currently been feeding?
- How many days are we feeding hay?
- · Can we make long term strategic improvements to grazing system?

Grazing Recordkeeping

- Number fields
- Date and duration of grazing
- Date of turnout and of hay feeding
- Cow grazing days is a function of forage management and is calculated
- Xdays * Ycows = Z cow grazing days
- $(X days*Y cows) = \frac{Z cow grazing days}{CDA} = CDA$

	Gra	zina	r R	900	rde	s F	yan	nple
			1 7		G.	, 	Auii	ipic
Grazing		Summer		Fall	Winter	Grazing		
Season	Turnout	Stockpile	Fall Hay	Stockpile	Hay		Hay Days	Comment
2007	26-Mar	None	19-Aug	10-Nov	22-Feb	220	145	Extremely dry fall
2008	24-Apr	20-Aug	21-Nov	27-Nov	1-Feb	275	90	
2009	26-Apr	18-Aug		26-Nov	19-Dec	254	111	3' of snow on 12/19/09
2010	20-Apr	20-Aug	7-Nov	17-Nov	24-Jan	268	97	D 013110W 011 12/13/03
			7-1400					
2011	21-Apr	22-Aug		15-Nov	27-Feb	316	49	
2012	16-Apr	16-Aug		13-Nov	7-Feb	288	77	
2013	25-Apr	20-Aug		18-Nov	18-Feb	289	76	
2014	5-May	14-Aug		30-Oct	10-Jan	264	101	Dry fall
					Average	272	93	
					Data	Courtesy of Da	vid Fiske, Shena	ndoah Valley AREC/McCormic

Grazing Management

- Xdays * Ycows = Z cow grazing days
- Example
- Farm 1: 200 acres, 100 cows, 229 days
- $230 \ days * 100 \ cows = 23000$
- 22900 cow grazing days; $\frac{115 \text{ days}}{acre}$
- 115 cow grazing days/acre

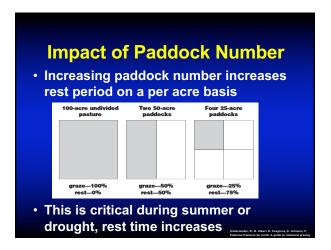
Grazing Management

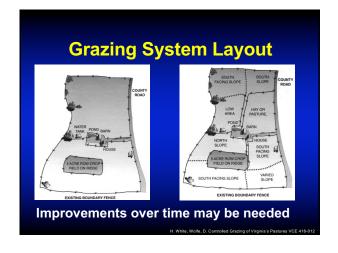
- Xdays * Ycows = Z cow grazing days
- Farm 2: 200 acres, 100 cows, 275 days
- $275 \ days * 100 \ cows = 27500$
- 27500 cow grazing days; $\frac{138 days}{acre}$
- 138 cow grazing days/acre
- Difference, 20% improvement in grazing management (45 days)

Improving Grazing Management

- Rotational Grazing
 - Biggest benefit is allowing forage to rest
 - Increase stocking rate or length of grazing
 - Pays for investments in infrastructure
- Must design or improve grazing system to increase resting days
- Increase in paddock number increase grazing efficiency

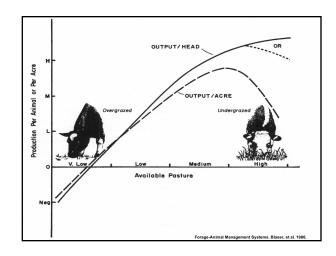
Impact of Paddock Number


- Farm with one 200 acre field
- Turn in 100 cows
- Assume 2 ton yield=4000 lbs
- · Assume 1400 lb cows using 3% of wt
- 200acres * 4000lbs = 800,000lbs
- $\bullet (100 * 1400 * .03) = 4,200 lbs$
- $\frac{800000}{4200}$ = 190 days


Impact of Paddock Number

- Farm with five 40 acre fields
- Rotate herd of 100 cows
- · Same assumptions: 2 ton yield
- · 1400 lb cows using 3% of wt
- $40 \ acres * 4000 \ lbs = 80,000 \ lbs$
- (100 * 1400 * .03) = 4,200lbs
- $\frac{80000}{4200}$ = 19 days

Impact of Paddock Number

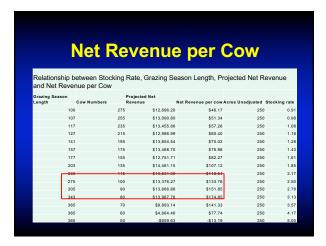

- Paddock 1: 19 days of grazing
- Paddock 2-5: 19 days of grazing each
- 19 * 4 = 76 days of rest for Paddock 1
- 95 days of grazing for one rotation
- Two rotations = 190 days
- Two and half rotations = 238 days
- Limiting factor is length of growing season

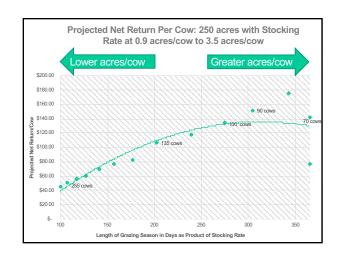
Optimize Stocking Rate

- Traditional thinking is that 2 acres a cow is proper stocking rate
- 2.0 to 3.0 acres/cow seems to be optimum
 - Allows for optimal forage growth while covering feed costs
- Understocking/undergrazing
 - Poor use of forage and inability to cover fixed costs

Determining appropriate stocking rate

- 250 acres, variable stocking rate
 What do net returns look like?
- Xdays * Ycows = Z cow grazing days
- 275days * 100cows = 27500 cow grazing days
- Hold 27500 constant to solve for grazing days
- Stocking Rate=2.0acres/cow

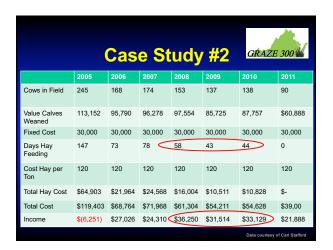

Stocking rate


- 275days * 100cows = 27500 cow grazing days
- 2.5 acres/cow
- What if we reduced cows to 90?
- Xdays * 90cows = 27500 cow grazing days
- Xdays = 305 cow grazing days
- hay feeding days = 365 305 = 60
- What does that do to profitability?

Stocking Rate Budget Assumptions

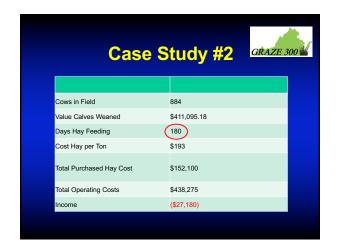
- · Assume \$20,000 fixed costs
- \$144/cwt steers; \$130/cwt heifers
- 85% calves weaned per cow exposed
- \$71/ton hay
- Cow numbers and hay feeding only variable that changes.

Stocking Rate Budget Assumptions										
Cow Herd Size	90 cows		Cow Herd Size	100 cows						
Gross Revenue	\$61,650		Gross Revenue	\$67,918						
Gross Rev/Per cow	\$685		Gross Rev/Per cow	\$679						
Variable Costs			Variable Costs							
Hay Feeding Days	60		Hay Feeding Days	90						
Hay/Grain Costs	\$8,029		Hay/Grain Costs	\$13,398						
Salt & Mineral	\$1,346		Salt & Mineral	\$1,496						
Total Variable Costs	\$27,983		Total Variable Costs	\$34,541						
Total Fixed Costs	\$20,000		Total Fixed Costs	\$20,000						
Net Return			Net Return							
Total Net Return	\$13,667		Total Net Return	\$13,376						
Net Return/Per Cow	\$151		Net Return/Per Cow	\$133						



Findings

- Net Revenue per cow is optimized at 275-300 days
- Understocked begins around grazing 340+ days...Not enough rev to cover fixed costs
- Good Hypothetical Example
 Will it work in real life?


Graze 300 Case Study #1

- 250 acre operation: 245 cows
- Farm was losing \$25/per cow
- Stocked at a rate of 1.0 acre per cow
- Feeding 147 days
- · Hay was \$120/ton
- Recommendations?
 - Improve stocking rate to 2.0-2.5

Case Study #2

- · Farm continued to add numbers
- Maintained multiple breeding groups
- Pastures not allowed to rest
- No improvements to grazing design
 - Water limitations
- Stocking rate 1.85 acres/cow
- Recommendations?
 - Reduce cow numbers 10%,..etc.

Case Study #3

- 310 Cows on 710 acres
 - owned & rented
- Feeding Hay 144 days
 - Thanksgiving to April
- Limited rotational grazing
- Recommendations?
 - Improve grazing to limit hay feeding days

Case Study #3

- $221 \ days * 310 \ cows = 68,510$
- $\frac{68510 cow grazing days (CDA)}{710 acres} = 97 CDA$
- $300 \ days * 310 \ cows = 93000$
- 93000 cow grading days (CDA) = 131 CDA
- Improvement in 34 cow grazing days an acre resulted in an income increase of 42%!

But what about Rented Ground?

- Rented ground does make some of these aspects impractical
 - if economies of scale are the goal then rented ground is an option
- Temporary fencing may still be an option

