

U.S. Dairy Forage Research Center, USDA Agricultural Research Service

Why Choose Baled Silage over Hay?

 well-made baled silage will often exhibit better quality characteristics than corresponding hays
 less leaf loss (legumes)

- less wilting time required
- reduced risk/exposure to rain damage
- little or no spontaneous heating

no weathering after baling (outdoor storage)

Regardless of silo type, <u>most management</u> principles are the same.

 start with highquality forage

Typical Characteristics of Chopped Grass Silages in Northern Europe from Different Fermentation Types

Item	Lactic Acid	Wilted	Clostridial	Acetic Acid	Sterilized 78.8	
Moisture, %	81.0	69.2	83.0	82.4		
pH	3.9	4.2	5.2	4.8	5.1	
Ammonia N, % of N	7.8	8.3	24.6	12.8	3.0	
Lactic Acid, %	10.2	5.9	0.1	3.4	2.6	
Acetic Acid, %	3.6	2.4	2.4	9.7	1.0	
Butyric Acid, %	0.1	0.1	3.5	0.2	0.1	
WSC, %	1.0	4.8	0.6	0.3	13.3	

Baled Silage vs. Precision-Chopped Haylage sliage fermentation is restricted by the lower moisture content of baled silage lack of chopping action in baled silages forces sugars to diffuse from inside the plant to reach lactic-acid producing bacteria adhered to the outside of the forage

 although dependent on many factors, baled silage may be less dense (DM/ft³) than some other (chopped) silo types, which also may restrict availability of sugars to lactic-acid producing bacteria

Water Soluble Carbohydrates (WSC) for Selected Forage Crops			
WSC, % of DM			
10 - 20			
10 - 20			
10 - 15			
8 - 12			
8 - 12			
4 - 7			
2 - 4			
< 5			
< 5			
1 - 4			

Water Soluble Carbohydrates (WSC) for Fall-Grown Oat as Affected by N Fertilization Rate

N Fertilization Rate	2011	2012	
lbs N/acre	%	of DM	-
0	12.4	19.3	
22	12.3	17.4	
45	11.5	17.4	
67	10.0	16.5	
90	10.1	16.3	The states
SEM	0.76	0.53	
Contrast		P > F	
Linear	0.004	< 0.001	
Quadratic	ns	ns	
Cubic	ns	ns	

	led Forage	crops	
Crop/Species	Range	Mean	•
Corn Silage	149-225	185	
Timothy	188-342	265	
all Oat (Headed)	300-349	323	
Orchardgrass	247-424	335	
Red Clover		350	
Fall Oat (Boot)	360-371	366	
talian Ryegrass	265-589	366	
falfa (mid-bloom)	313-482	370	
rennial Ryegrass	257-558	380	
falfa (1/10 bloom)	367-508	438	
Alfalfa	390-570	472	
White Clover		512	

- Safety
- Equipment/Baler
- Clostridial Fermentations*

g qPCR

cfu/g

5.5

4.5

3.5

No Slurry

Stubble

Slurry Application Treatment

1 Week

2 Weeks

idium Cluster 1, log₁₀

ŝ

Pre-ensiled Post-ensiled

Highly Sugared Forage Crops ¹								
Treatment	Moisture	WSC	Acid	Ethanol	рН	NDF	СР	TDN
		% of DM			% of DM			
Boot Stage								
Initial	67.6	22.6			6.90	40.3	13.7	71.4
Final	74.0	17.8	4.82	5.82	4.61	47.0	17.9	67.8
Early Heading Stage								
Initial	63.7	21.0			6.94	46.9	14.6	69.7
Final	67.3	11.9	1.63	4.85	5.71	55.0	16.0	60.9
¹ 'Vista' fall-grown oat.								
Coblentz et al. (2015)					5) 📜			

• do not puncture plastic - isolate from cattle, pets, and vermin

Summary

- Forage crops differ; learn their characteristics.
- Most principles of management for conventional chopped silage still apply to baled silage.
- Moisture management is critical; generally, baled silage techniques will accommodate drier (<50%) forages better than relatively wet (>60%) ones.
- Fermentation occurs at a slower rate for baled silage because forages are:

 ensiled on a whole-plant basis
 - usually drier and less dense than chopped silages

Summary

- As a result, producers should diligently address other management details:
 - maximize bale density (> 10 lbs DM/ft³)
 - consider an inoculant (LAB) if forage is damaged, manure has been applied, or if bale moisture approaches 60% (alfalfa); grasses are a bit more forgiving
 - apply plastic wrap promptly and properly (damage is likely relatively minor up to 24 hours)
 - protect the product (4 plastic layers is the minimum, 6 or 8 are better)
 - stabilize your investment by excluding air (select a good storage site, check and repair holes)

QUESTIONS?

Leading the world in integrated dairy forage systems research

U.S. Dairy Forage Research Center

www.ars.usda.gov/mwa/madison/dfrc