Heifers – weaning to calving - Low input animal - Low cost feeds - · Low cost facilities - Low intensity management - Impact of management not readily evident - Records? - Reproduction - Calving age and 1st lactation performance vww.vtdairy.dasc.vt.edu ## Heat stress in the U.S. • Thermo neutral zone for dairy cattle – 5 – 25°C (41 – 77°F) www.utdairu.dasc.ut.e ## U.S. Climatic differences - Duration of heat stress - -4-6 months in southeastern U.S. - Onset of heat stress - Intensity of heat stress - Night time cooling www.vtdairv.dasc.vt.e ## Dairy heifer management system differences www.vtdairy.dasc.vt.edu ## Dairy heifer management systems www.vtdairy.dasc.vt.e ## Heat stress and dairy heifers - Holstein females raised at latitudes less than 34°N weighed 6 – 10% less (NRC, 1981) - Great maintenance requirements during hot weather for larger animals - More difficult to relieve heat load due to smaller surface area relative to body size. - Lower DMI - Poorer forage quality - Extensive housing systems in S.E. www.vtdairv.dasc.vt.e ## Animal responses to heat stress - Increased water intake - Decreased ration dry matter intake - Decreased reproductive performance - Influence on prepartum dairy heifers - Colostrum production and quality - Calf size and health www.vtdairy.dasc.vt.edi ## Impact on water intake - Arias and Mader (2011) - 7 studies with Angus crossbred feed lot cattle - Recorded climatic data - Simple and multiple regression analysis by season and for overall data - Best predictors of water intake (R2) - THI = .57, Mean ambient temperature = .57, Min Temp. = .56 and Max Temp. = .54 - Solar radiation and DMI had smaller influence. www.vtdairy.dasc.vt.ed | |
 | | |--|------|--| | | | | ## Impact on Dry Matter Intake (10 month old Friesian Heifers) | Item | Control
Temperature | Heat stress
3 days | Heat stress
24 days | Control vs.
Heat stress (P) | |-------------------------|------------------------|-----------------------|------------------------|--------------------------------| | DMI (kg/day) | 8.01 ^a | 7.48 ^b | 7.18 ^b | .01 | | Water intake
(L/day) | 27.55ª | 42.61 ^b | 45.54 ^b | .01 | | DM digestibility (%) | 57.3ª | 68.4 ^b | 60.6ª | .05 | | BW (kg) | 312 ^a | 325 ^b | 343° | .05 | | Body condition score | 3.0ª | 2.9ª | 2.7 ^b | .05 | ## Impact on Dry Matter Intake • Quigley et al. 1985. Control THI = 64, Heat stress THI = 84 - 118 Holstein heifers 100 400 kg - Rations from 85 to 115% of NRC requirements (1978) for energy. – corn silage/grass hay/ corn/ soybean meal. - Inclusion of ambient temperature in model to predict DMI had negligible impact on DMI. - Heifers waited to cooler night time hours to eat? www.vtdairy.dasc.vt.edi • Expanded model was: DMI (kg/day) = -.1906.91 + 0.04 * BWT) + (0.37 *MBWT) + (32.36 * ADF) + (2305.51 * NEM) + (-664.06 * NEG) + (-0.08 * AMBT) + (-0.13 * ADFSQ) + (-637.68 *NEMSQ) + (42.31* NEGSQ) + (-5.35 * BULKSQ) + (0.001 * AMBTSQ) + (-1.56E-04 * BWT * ADF) + (8.873E-05* BWT * AMBT) + (246.30 * NEM * NEG) + (-21.30 * NEM * ADF) + (7.83 * NEG * ADF) + (0.04 * NEG * AMBT) + (0.01 * GAIN * ADF) + (-0.01 * GAIN * AMBT); | • | n = 4429, | r ² | = .6 | 55, | $S_{v.x}$ | = : | 1.09 |). | |---|-----------|-----|------|-----|-----------|-----|------|----| |---|-----------|-----|------|-----|-----------|-----|------|----| ryt edu - Simplified model was: DMI (kg/day) = -29.86 + (-.54E-05 * BWT²) + (.157 * MBWT) - + (2.090 * GAIN) + (-.118 * GAIN²) + (.730 * TDN) + (-.005 * TDN²) + (-.001 * BWT *GAIN) + (-.019 * TDN* GAIN); - n = 4797, $r^2 = .59$, $s_{v.x} = 1.18$. adatas dana sa ada ## Impact on reproductive performance - Effects of controlled heat stress on ovarian function of dairy cattle. 2. Heifers (Wilson et al. J. Dairy Sci. 81;2132) - Estrus synched heifers estrus = day 0 - Thermo neutral = 21 C \sim 60% humidity - Heat stress = 33 C $^{\sim}$ 60% humidity $\,$ day 9 22 of cycle - Growth and regression of follicles and CL - Bled daily progesterone and estradiol www.vtdairy.dasc.vt.ed ## Wilson, cont'd - Thermo neutral heifers 2nd wave dominant follicle larger with ovulation – 9 - 11 days. (9 of 11 heifers) - Heat stressed 2nd wave follicle regressed and followed by ovulatory 3rd wave follicle. - Lower estradiol d 11-21 - Delayed luteolysis asc vt edu ## Prepartum heifers - Composition of colostrum from heifers exposed to high air temperatures during late pregnancy and the early postpartum period. (Nardone et al., J. Dairy Sci. 80:838) - Control THI = 65 - Heat stressed THI = 82 from 0900 2000 and THI = 76 from 2000 – 0800. www.vtdairv.dasc.vt.er Nardone, cont'd - · Heat stressed heifers - Decline of plasma Ig during last 2 wk of pregnancy was less. - Lower mean concentration of IgG and IgA, total protein, casein, lactalbumin, fat, lactose, short and medium chain F. A. in colostrum. www.vtdairy.dasc.vt.ed Other observations on the heat stressed prepartum heifer - Smaller birth weight of calves - Less vigorous calves - Reduced immune signaling molecules from calves born to heifers during high solar load. - Reduced absorption of colostral antibodies - Impact of dam's hormonal condition - Impact of greater bacterial environmental load www.vtdairy.dasc.vt.ed 10 | | _ | | |--|---|--| ## Managing heat stress in heifers Focus points - Facility design - Extensive systems Shade - Intensive systems - - Mechanically ventilated facilities - Naturally ventilated facilities - Water plenty and clean - Dietary modification www.vtdairv.dasc.vt # Facilities Intensive Extensive **Second Control of C # Extensive management systems. Huffard Dairy Farms – Crockett, VA ## Reproduction barn ## Extensive management systems - Stocking density is major concern - Management intensive grazing Portable shade? - Trees are short term solution - Usually will not survive as shade provider. - Need is dependent on existence of night time cooling. www.vtdairy.dasc.vt.ed ## Intensive management systems Line of the Middle Mi ## Intensive management systems - Open side walls with east/west orientation and roof overhang for summer shade - Cost effective - Improved feed efficiency 12 25% lower maintenance expense - - Water availability and disposal for cooling systems www.vtdairy.dasc.vt.e ## Intensive management systems Wanderhyde Dairy - Chatham, VA # Intensive management systems Before – 500 cow dairy in south central Virginia ## Intensive management systems After – south central Virginia ## Cost of heifer expansion - Land preparation - Facility construction - Capacity cost / animal - Additional advantages above heat abatement - Labor savings feeding, manure, animal handling. - Feed management www.vtdairy.dasc.vt.e ## Cost – Two central Virginia dairies - Turn key cost - Dairy #1 500 cows - 250 heifers @ \$290,000 = ~\$1,160/stall - Dairy #2 1,000 cows - 953 stalls @ \$1,150,000 = ~\$1207/stall | Estimated water intake for heifers | | | | | | | |---|----------------|---------------|------|--|--|--| | Weight (lb) | 40°F | 60°F | 80°F | | | | | | - | Gallons / day | | | | | | 200 | 2.0 | 2.4 | 3.3 | | | | | 400 | 3.8 | 4.6 | 6.1 | | | | | 600 | 5.4 | 6.5 | 8.7 | | | | | 800 | 6.8 | 8.2 | 11 | | | | | 1000 | 8.0 | 9.6 | 12.7 | | | | | 1200 | 9.0 | 10.8 | 14.5 | | | | | Source: Looper, M. and D. Waldner. 2002. Water for Dairy Cattle. D-107. New Mexico State University Cooperative Extension Service. $About \ 1-1.5 \ gallons \ of \ water/100 \ lb. \ body \ weight$ | | | | | | | | | www.vtdairy.da | sc.vt.edu | | | | | ### Partial regression coefficients for models assessing environmental factors and DMI influences on DWI 4.81 16.10 5.92 DMI (kg/d) 0.04 0.01 0.02 Solar radiation W/m⁻² 0.14 .01 0.07 Max. temp. (C) 0.05 0.50 Min. temp (C) 0.56 Wind speed 0.04 Precipitation (cm/d) 0.05 Total R² 0.23 0.23 0.65 (Arias and Mader, 2011, J. Anim. Sci. 89:245) ## Water quality - Mineral and nitrogen content - Nitrates manure and fertilizer contamination - Minerals of concern - Total dissolved solids salinity - Magnesium compounds plus sodium sulfate < 50% of TDS - Sulfate - Iron - Manganese - Organoleptic taste ## Evaluating water quality for livestock Beede, D., 2006, High Plains Dairy Conference Proceedings. | Quality Factor | Threshold concentration mg/L | Limiting concentration mg/L | |------------------------|------------------------------|-----------------------------| | Total dissolved solids | 2,500 | 5,000 | | Calcium | 500 | 1,000 | | Magnesium | 250 | 500 | | Sodium | 1,000 | 2,000 | | Bicarbonate | 500 | 500 | | Chloride | 1,500 | 3,000 | | NO ₃ | 100 | 100 | | NO ₂ | 10 | 10 | | Sulfate | 500 | 1000 | Threshold – sensitive animals show slight effect Limiting – definite adverse reactions ## Water quality Minerals - Growing heifers tolerated 1.75% NaCl during the winter but only 1.2% NaCl during the summer (Weeth and Haverland (1961) - Sulfur and Sulfate H₂S cattle adapt? - Sulfate and chloride <1000 ppm</p> - Iron <0.3ppm - Dark slime from iron loving bacteria palatability and water flow - Interferes with Cu and Zn absorption - Manganese palatability www.vtdairv.dasc.vt.o - Nitrates NO₃ - Young calves? <50 ppm</p> - Adult cattle <100 ppm</p> - Algal blooms of cyanobacterium - Anorexia, diarrhea, weakness - Palatability? - Bacterial growth? No documented studies www.vtdairy.dasc.vt.ed ## **Dietary modification** - Impact of heat stress on intake and animal parameters - Marai et al. 1995 J. Arid Environ 30:219. - 17 vs. 36°C - With or without water and ammonium acetate (diaphoretic) v.vtdairy.dasc.vt.edu 42 | - | | |---|--| | | | | | | | | | | | | ## Effect of summer conditions and diaphoretic plus water spray | Items | Winter | Summer | Change | Water and diaphoretic | Change
(Above
summer) | |------------------------------|--------|--------|--------|-----------------------|-----------------------------| | Daily solids
gain (g/day) | 313.8 | 170.8 | -45.6% | 266.6 | +56.1% | | Roughage
intake* | 28.0 | 21.5 | -23.2% | 25.0 | +16.3% | | Concentrate intake* | 52.5 | 52.5 | - | 52.5 | - | | Feed
efficiency | .16 | .11 | -31.7% | .136 | +25.9% | • kg/day/10 calves ## Managing feeding programs for heatstressed dairy heifers - Animals of greatest concern - Weaning pens fragile intake - Highest quality forage dry hay - Silage? - Palatability - Breeding age animals - Heat detection and strength of estrus - Prepartum heifers - Colostrum production - Calving www.vtdairy.dasc.vt.ed ## The challenge in managing heifer feeding programs - Monitoring feed intake? - Monitoring heifer performance? - Compensatory gain ### Cameiro Heifer Ranch Brawley, CA - Jerry Craveiro/Diana Lujano - ~10,000 heifer feedlot - - Daytime temperatures 100 125°F April Sept. - Track dry matter intakes - Continuous evaluation of body condition - Weights 3 weeks post arrival, breeding, departure – too much lag for routine weighing. www.vtdairv.dasc.vt.edu ## Mitigating influence of climate - Anticipate reaction of heifer based upon past experience and records - Monitor weather - Palatable diets without excessive moisture to optimize dry matter intake and digestive health - Know dry matter and nutrient content of feeds - Trained feeders to evaluate animal responses and intake. - Minimum space requirements for feed bunk and corral space. www.vtdairy.dasc.vt.ed - Feed for empty bunks so there is no spoiled feed in the bunks. - Care for feed inventory - Truck scales checked every Monday. ov dase vt edu ## Adjust DMI for expected weather - Not a problem with most heifers due to "luxury" of ad lib intake. - Research with limit fed heifers -Wisconsin/Penn State University ## Limit feeding dairy heifers Hoffman, Univ. of Wisconsin | Item | Control | Restricted – 90 | Restricted - 80 | |----------------------------|---------|-----------------|-----------------| | Forage | 94.3% | 80.3% | 62.7 | | Concentrate | 5.7% | 19.7% | 37.3% | | NDF | 47.3% | 41.8% | 35.6% | | DMI | 21.3 | 19.9 | 18.3 | | NE _G Mcal/d | 9.4 | 9.4 | 9.5 | | Weight – initial | 1036 | 1021 | 1011 | | Weight – final | 1220 | 1234 | 1217 | | Feed effic.
*(DMI/gain) | 13.2 | 10.7 | 11.1 | | Excretion – lb./d** | 7.7 | 7.9 | 5.8 | | Post partum BW | 1238 | 1245 | 1275 | | 0- 150 d Ave. milk prod. | 68.8 | 68.9 | 72.4 | ### Other tools for heat stressed heifers - Yeast - Bach, A. et al, Animal Feed Science Tech (136:146) - Lactating dairy cattle supplemented with 5g S. cerevisiae (1010cfu/d) - Monitor rumen pH with in dwelling pH meter. - Ave. rumen pH was greater with Yeast - Higher meal frequency - Response within one week of supplementation. ## Tools for heat stressed heifers - Ionophores Rumensin / Bovatec - Clarifly larvicide www.utdairu.dasc.ut.o ## Heat stress in heifers - Address those groups most affected - - Youngest, breeding age, prepartum - Water availability and quality. - Facilities - Will the expense be offset by improved performance? - Payback is intertwined with feed efficiency, labor efficiency as well as feed efficiency. - Diet formulate for reduced DMI. Luxury that DMI is not limiting factor for heifer growth. www.vtdairy.dasc.vt.e